Anest. intenziv. Med. 2006;17(5):246-250

Fuzzy logic in anaesthesiology as a way of thinking and a tool for practical applicationsAnaesthesiology - Comprehensive Report

M. Adamus1, R. Bělohlávek2
1 Klinika anesteziologie a resuscitace, LF Univerzity Palackého a Fakultní nemocnice, Olomouc
2 Katedra informatiky, PřF Univerzity Palackého, Olomouc

Uncertainty and indeterminacy are typical of expert knowledge in humanities. Data processed by an expert (e. g. a medical doctor) are often imprecise, uncertain, and indeterminate. It is, however, these data according to which the expert has to make his/her decisions. Processing of indeterminate and uncertain data is the subject of fuzzy logic, which deals with fuzzy sets. In a broad variety of situations and tasks for which no precise mathematical models are available, an expert is able to formulate his/her knowledge and problem solving strategy in a natural language by means of so-called"if-then"rules. Rule-based fuzzy systems, which are based on these rules, represent a mathematical model that results directly from the expert's experience described in a natural language. In addition to that, fuzzy systems provide us with a means of communication easily usable and thus comprehensible by a computer. Fuzzy systems can be applied to a broad spectrum of situations in medicine, such as diagnostic expert systems and feedback fuzzy control devices.

Keywords: fuzzy logic; indeterminacy; linguistic description; fuzzy control

Published: October 1, 2006  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Adamus M, Bělohlávek R. Fuzzy logic in anaesthesiology as a way of thinking and a tool for practical applications. Anest. intenziv. Med. 2006;17(5):246-250.
Download citation

References

  1. Feynman, R. P., Leighton, R. B., Sands, M. Feynmanove prednášky z fyziky. 2. vydání. Bratislava : Alfa 1986, 451 s.
  2. Shortliffe, E. H. Computer-Based Medical Consultations: MYCIN. 1. vydání. New York : Elsevier 1976, 264 p. ISBN 0-444-00179-4. Go to original source...
  3. Zadeh, L. A. Fuzzy sets. Information and Control, 1965, 8, p. 338-353. Go to original source...
  4. Bělohlávek, R. Fuzzy Relational Systems: Foundations and Principles. 1. vydání. New York : Kluwer 2002, 369 p. ISBN 0-306-46777-1.
  5. Dubois, D., Prade, H. Fuzzy Sets and Systems: Theory and Applications. 1. vydání. New York : Academic Press 1980, 393 p. ISBN 0-12-222750-6.
  6. Klir, G. J., Yuan, B. Fuzzy Sets and Fuzzy Logic: Theory and Applications. 1. vydání. Upper Saddle River, NJ : Prentice Hall, PTR 1995, 574 p. ISBN 0-13-101171-5.
  7. Asbury, A. J., Tzabar, Y. Fuzzy logic: new ways of thinking for anaesthesia. Br. J. Anaesth., 1995, 75, p. 1-2. Go to original source... Go to PubMed...
  8. Kosko, B. Fuzzy Thinking. 1. vydání. London : Flamingo 1994, 318 p. ISBN 0-00-654713-3.
  9. Shono, H., Oga, M., Shimomura, K., Yamasaki, M., Ito, Y., Muro, M., Sugimori, H. Application of fuzzy logic to the Apgar scoring system. Int. J. Biomed. Comput., 1992, 30, p. 113-123. Go to original source... Go to PubMed...
  10. Tsakonas, A., Dounias, G., Jantzen, J., Axer, H., Bjerregaard, B., von Keyserlingk, D. G. Evolving rule-based systems in two medical domains using genetic programming. Artif. Intell. Med., 2004, 32, p. 195-216. Go to original source... Go to PubMed...
  11. Guo, Y., Cheng, H. D., Huang, J., Tian, J., Zhao, W., Sun, L., Su, Y. Breast ultrasound image enhancement using fuzzy logic. Ultrasound Med. Biol., 2006, 32, p. 237-247. Go to original source... Go to PubMed...
  12. Westenskow, D. R. Fundamentals of feedback control: PID, fuzzy logic, and neural networks. J. Clin. Anesth., 1997, 9, Supplementum 6, p. 33S-35S. Go to original source... Go to PubMed...
  13. Ibbini, M. A PI-fuzzy logic controller for the regulation of blood glucose level in diabetic patients. J. Med. Eng. Technol., 2006, 30, p. 83-92. Go to original source... Go to PubMed...
  14. Schaublin, J, Derighetti, M., Feigenwinter, P., Petersen-Felix, S., Zbinden, A. M. Fuzzy logic control of mechanical ventilation during anaesthesia. Br. J. Anaesth., 1996, 77, p. 636-641. Go to original source... Go to PubMed...
  15. Bates, J. H., Hatzakis, G. E., Olivenstein, R. Fuzzy logic and mechanical ventilation. Respir. Care Clin. N. Am., 2001, 7, p. 363-377. Go to original source... Go to PubMed...
  16. Curatolo, M., Derighetti, M., Petersen-Felix, S., Feigenwinter, P., Fischer, M., Zbinden, A. M. Fuzzy logic control of inspired isoflurane and oxygen concentrations using minimal flow anaesthesia. Br. J. Anaesth., 1996, 76, p. 245-250. Go to original source... Go to PubMed...
  17. Shieh, J. S., Kao, M. H., Liu, C. C. Genetic fuzzy modelling and control of bispectral index (BIS) for general intravenous anaesthesia. Med. Eng. Phys., 2006, 28, p. 134-148. Go to original source... Go to PubMed...
  18. Allen, R., Smith, D. Neuro-fuzzy closed-loop control of depth of anaesthesia. Artif. Intell. Med., 2001, 21, p. 185-191. Go to original source... Go to PubMed...
  19. Huang, J. W., Lu, Y. Y., Nayak, A., Roy, R. J. Depth of anesthesia estimation and control. IEEE Trans Biomed. Eng., 1999, 46, p. 71-81. Go to original source... Go to PubMed...
  20. Jensen, E. W., Nebot, A., Caminal, P., Henneberg, S. W. Identification of causal relations between haemodynamic variables, auditory evoked potentials and isoflurane by means of fuzzy logic. Br. J. Anaesth., 1999, 82, p. 25-32. Go to original source... Go to PubMed...
  21. Ross, J. J., Mason, D. G., Linkens, D. A., Edwards, N. D. Self-learning fuzzy logic control of neuromuscular block. Br. J. Anaesth., 1997, 78, p. 412-415. Go to original source... Go to PubMed...
  22. Edwards, N. D., Mason, D. G., Ross, J. J. A portable self-learning fuzzy logic control system for muscle relaxation. Anaesthesia, 1998, 52, p. 136-139. Go to original source... Go to PubMed...
  23. Mason, D. G., Ross, J. J., Edwards, N. D., Linkens, D. A., Reilly, C. S. Self-learning fuzzy control with temporal knowledge for atracurium-induced neuromuscular block during surgery. Comput. Biomed. Res., 1999, 32, p. 187-197. Go to original source... Go to PubMed...
  24. Zbinden, A. M., Feigenwinter, P., Petersen-Felix, S., Hacisalihzade, S. Arterial pressure control with isoflurane using fuzzy logic. Br. J. Anaesth., 1995, 74, p. 66-72. Go to original source... Go to PubMed...
  25. Huang, S. J., Shieh, J. S., Fu, M., Kao, M. C. Fuzzy logic control for intracranial pressure via continuous propofol sedation in a neurosurgical intensive care unit. Med. Eng. Phys., 2006, 28, p. 639-647. Go to original source... Go to PubMed...
  26. Adamus, M., Belohlavek, R., Koutna, J., Zacpal, J. Automatic control of rocuronium-induced neuromuscular block. Eur. J. Anaesthesiol. Suppl., 2004, 21, Supplement 32, p. 22. Go to original source...




Anesteziologie a intenzivní medicína

Madam, Sir,
please be aware that the website on which you intend to enter, not the general public because it contains technical information about medicines, including advertisements relating to medicinal products. This information and communication professionals are solely under §2 of the Act n.40/1995 Coll. Is active persons authorized to prescribe or supply (hereinafter expert).
Take note that if you are not an expert, you run the risk of danger to their health or the health of other persons, if you the obtained information improperly understood or interpreted, and especially advertising which may be part of this site, or whether you used it for self-diagnosis or medical treatment, whether in relation to each other in person or in relation to others.

I declare:

  1. that I have met the above instruction
  2. I'm an expert within the meaning of the Act n.40/1995 Coll. the regulation of advertising, as amended, and I am aware of the risks that would be a person other than the expert input to these sites exhibited


No

Yes

If your statement is not true, please be aware
that brings the risk of danger to their health or the health of others.